
Dijkstra’s Algorithm

Dr. Monika Patel

 Assistant Professor

 Dept of Computer Science

Durga Mahavidyalaya

Raipur (CG)

Dijkstra’s Algorithm is a greedy algorithm used in graph theory (a part of discrete mathematics)

to compute the shortest path from a source vertex to all other vertices in a weighted graph with

non-negative edge weights.

Graph (G = (V, E)):

A set of vertices (V) and edges (E) connecting pairs of vertices.

Weighted Graph:

Each edge has an associated weight or cost.

 Path:

A sequence of edges that connects a sequence of vertices.

 Shortest Path:

The path with the minimum total weight between two vertices.

 Greedy Algorithm:

Makes the locally optimal choice at each step.

 Algorithm Steps:

 Let G = (V, E) be a graph with vertices V and edges E.

 1. Initialize:

 Set the distance to the source vertex as 0.

 Set the distance to all other vertices as ∞.

 Mark all vertices as unvisited.

2. Set the source as the current node.

 3. For the current node:

 Check all its unvisited neighbors.

 Calculate their tentative distances through the current node.

 If the calculated distance is smaller, update it.

 4. Mark the current node as visited.

 5. Select the unvisited node with the smallest tentative distance and set it as the new current

node.

 6. Repeat steps 3 to 5 until all vertices are visited or the destination is reached.

 Pseudocode:

 function Dijkstra(Graph, source):

 for each vertex v in Graph:

 dist[v] := infinity

 previous[v] := undefined

 dist[source] := 0

 Q := set of all vertices in Graph

 while Q is not empty:

 u := vertex in Q with smallest dist[u]

 remove u from Q

 for each neighbor v of u:

 alt := dist[u] + weight(u, v)

 if alt < dist[v]:

 dist[v] := alt

 previous[v] := u

Properties:

 Works only with non-negative edge weights.

 Guarantees optimal solution.

 Uses greedy approach for selecting the next node.

 Time Complexity:

 Using simple array: O(V^2)

 Using min-priority queue (binary heap): O((V + E) log V)

Applications:

 Network routing protocols (like OSPF)

 GPS navigation systems

 Game development (path finding)

 AI and robotics

Limitations:

 Does not work with negative edge weights.

 For negative weights, use Bellman-Ford Algorithm.

